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Expressions for mechanical stresses and strains in a multilayer cylin-
drical solenoid carrying direct curent are derived and analyzed. The
results are valid for both an ordinary and a superconductive solenoid
whose length is large compared with its transverse dimensions.

§1. The mechanical stresses which arise in a cur-
rent carrying solenoid can result in its destruction.
Hence, in designing solenoids capable of withstanding
high-intensity magnetic fields it is necessary to know
the distribution and magnitude of the maximum stres-
ses in the coil. This can be done by solving the system
of equilibrium equations

8o [ Oz - f, = 0 (1.1)
under the appropriate boundary conditions. Here oik is
the mechanical stress tensor and fj is the volume den-
sity of the ponderomotive forces acting on the material
in the magnetic field.

The authors of works dealing with this problem (e. g. ,
see [1]) simplify it either by neglecting certain com-
ponents of the stress tensor or by neglecting the con-
ditions of continuity of the displacement vector (the so-
called St. Venant continuity conditions) which must be
added to system (1.1) in order for its solutions to have
physical meaning.

Correct solution of system (1.1) in the general case
presents serious mathematical difficulties. In the pre-
sent paper we shall obtain a solution for a multilayer
cylindrical solenoid whose length is large compared
with its transverse dimensions.

We assume that the solenoid can be regarded as a
continuous medium. In the case of a wire solenoid this
is permissible provided there are no shear strains
and that only compressive stresses act in directions

perpendicular to the coil windings. This assumption is '

also valid if we assume that the solenoid windings are
glued together. The medium can be considered homo-
geneous if the conductor is thin (as compared with all
the other dimensions of the solenoid) and if the coil is
sufficiently tight (dense). In the range of small strains
(the range in which Hooke's law holds) the elastic mod-
uli of the wire in the transverse and longitudinal direc~
tions are equal. This enables us to consider the medium
isotropic. Finally, since the thickness of the wire is
small as compared with the linear dimensions of the
solenoid, * it is also small as compared with the dis-
tances at which the magnetic field and ponderomotive

*The contribution of the neighboring windings to the
magnetic field is negligibly small as compared with the
contribution of the other windings whose magnetic field
is approximately homogeneous.

force change markedly. Hence, the current distribu-
tion over the cross section of the conductor is negligi~
ble. One of the implications of this is that our re-
sults are also applicable to superconductive solenoids.

§2. Let us determine the components of the pondero-
motive force fi' We disregard the magnetic prop-
erties of the medium, i.e., we set the magnetic per-
meability u equal to unity everywhere. The volume
density of the forces acting on the medium in the mag-
netic field is then given by the formula [2]

_1[jxR
H= {1,

= LjxH, j=In2. (2.1)

Here j is the current density, H is the magnetic
field intensity, R is the radius vector directed from
dV to the point of observation, and n is the number of
windings per unit length. For simplicity we assume
that the current J is equal in all the windings.

In the cylindrical coordinate system (r, ¢, z) we
obtain the following expressions for the components of
the force f:
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Here 2[ is the length of the solenoid, B is its out-
side radius, and b is its inside radius. By virtue of
the cylindrical symmetry of the problem the compo-
nents fp and fz do not depend on the coordinate ¢, and
fo=0.

Analysis of expressions (2.2) shows that the force
component f, which compresses the solenoid along the
z-axis, is equal to zero in the middle cross section of
the solenoid; it then increases monotonically with in-
creasing z, slowly at first, and then very rapidly to-
wards the ends of the solenoid, reaching its maximum
at the end faces (z = =]). The force component fy,
directed everywhere along the radius, is maximum in
the middle cross section of the solenoid, thendecreases
with increasing z, slowly at first, and rapidly as it
approaches the ends. Since f; ~ Hp and fr ~ Hy, it
follows that for j = const the corresponding components
of the magnetic field in a cylindrical solenoid depend
on z in exactly the same way.

For a long solenoid (B < [) we can expand the inte-
grands in expressions (2.2) in a series in the param-
eters p/(I + z), assumethat p <[+ z, and carry outthe



52 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

appropriate integrations. This yields
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These expressions are clearly valid far away from
the ends, i.e., for|z| < — B. In the zeroth approx-
imation, i.e., inthe limiting case of an infinitely long
solenoid, we have

;2
f,=4n2—2(B——r), f.=0. (2.5)

§3. Now let us formulate the problem of elastic
equilibrium of the solenoid under ponderomotive forces.
Making use of Hooke's law for an isotropic body [3],

Gy = Tli—l, (Zl‘u - i—_—f—gg u_ﬁéik) (31)
(E is Young's modulus, ¢ is the Poisson coefficient)
and the expression relating* the strain tensor ujk to

the displacement vector uj,
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we can rewrite equilibrium Eq. (1.1) as [3]

Au —l—l—:i—z—ggrad diva = mg(—l—],:."—s)f. (3.3)

Since the problem is cylindrically symmetric, u
does not depend on the coordinate ¢, and Uy = 0.
Hence, it is convenient to write Eq. (3 3) in cylindrieal
coordinates,
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*The St. Venant continuity condition is fulfilled auto~
matically in this case.

The following boundary conditions must be fulfilled
at the ends and side surfaces of the solenoid:
At the free ends of the solenoid

=G4, =0, =0 for z=+1, (3.5)
At the free side surfaces of the solenoid
Gy =06 =0;,=0 for r=b or r=B. (3.6)
At fixed side surfaces of the solenoid
u,=0 for r=b or r=B. (3.7)

§4. In order to find a solution valid far from the
ends of a long solenoid we make use of the St. Venant
principle (which should not be confused with the St.
Venant continuity condition) according to which the
distribution of strains and stresses far from the points
of application of forces does not depend on the force
distribution, but only on the total force and on the
total moment of forces [4]. We therefore proceed as
follows. We isolate the largest portion of the solenoid
at which expressions for the volume forces Egs. (2.3)
and (2.4) are valid. We substitute these expressions
into the right sides of Eqs. (8.4) and replace the forces
acting outside this isolated portion by the sum forces
applied to its boundaries. The solution of the problem
thus formulated is, by the St. Venant principle, close
to the solution of the initial problem far away from
the boundaries of the domain, i.e., inthe middlecross
section of the solenoid.

Let us determine the sum force acting along the
z-axis over the portion of the solenoid extending from
the cross section z tol To do this we integrate the
expression for f in Eq. (2.2) over z from z toI. This
can be done, as in integrating Eqgs. (2.3) and (2.4), by
expanding the integrand in a series in the parameters
o1+ =),
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Integrating F, over the cross section of the sole-
noid, we obtain the sum force &,
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The sum force due to f. is equal to zero.
Boundary condition (3.5) for ¢z, must be replaced
by the condition

n 2%
S r drS AP 6y, frmre = @, (z%), (4.3)
b G

where z = z* is the cross section bounding the isolated
portion of the solenoid. The inequalities B < z* <] —
— B must be fulfilled here—something which is impos-
sible in the case of a long solenoid (B < 7). The first
inequality is necessary to the existence of a domain in
which the St. Venant principle holds; the second in-
equality is necessary to the validity of expressions
(2.3}, (2.4), and (4.2).

§5. Let us find the solution in the zeroth approxi-
mation, i.e., the solution valid for an infinitely long
solenoid. We substitute expressions (2.5) into the
right sides of Egs. (3.4) and the first term of series
(4.2) into boundary condition (4.3). The solution which
is sufficiently general to satisfy all the boundary con-
ditions (4.3), (3.5), (8.6), or (3.7) then turns out to be
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Here and below we make use of the dimensionless
quantities

t=r/B, =b/B. (5.2)
The first two terms of ur in Eq. (5.1) represent a
particular solution of the inhomogeneous equation. The
constants «, £, yto be determined from the boundary

conditions are chosen in such a way that the compo-
nents oy which are of the greatest interest can be ex-
pressed in simple form.

For the components of the strain tensor ujk, solu-
tion (5.1) yields the following expressions in cylindrical
coordinates:

T B
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(5.3)

Upp == Upy = Ugy == 0.

Making use of formulas (3.1) and (5.3}, we can find

the components of the stress tensor
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From boundary condition (4.3) we obtain
= (1 + 27! [(—2-+120) %
x(1 -+ z+ 2% + (6—120)2%]. (5.5)

Boundary conditions (3.6) and (3.7) yield the follow~
ing values for the coefficients « and 8.

In the case of a free outside and a free inside sur-
face of the solenoid,

a = 7T—20 + Ba?,

B =1+ 27[(7—2%) — (9—ba)zl- (5.6

In the case of a free outside and a fixed inside sur-
face,

o = T—20 + Ba?,
=0+t +o0)—
+ (1 — 6)2 [(—T7+76 + 1002) -
+ (1 —c—609)z + (1 —o0)x
{1 — o) (3 —bo)z*].

x (5—20)2* — (5.7)

In the case of a fixed outside and a free inside sur-
face,

o = (16—80)z — (9—bo)z® + B,
B=(+a7 (1 —0)+

+ (1 + 02 [t — o) (5—20) —
— (1 — o) (11—bo)z —

—{(7—T70 — 1069 z* + (3—90 — Bo?)2?]. (5.8)
In the case of a fixed outside and a fixed inside
surface,
a = (1 + )™ [(5—20) (1 (3—fo)2?],

+z+ ) —

B=(1+ 2 (1—20)(—5+ 3x) (5.9)
§6. To determine the solution in the next (first)
approximation and thereby determine the degree of

accuracy of solutions (5.1)—(5.9) above, we substitute
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expressions (2.3), (2.4) into Egs. (3.4) and expression
(4.2) into boundary condition (4.3). This yields the
following terms which must be added to the zeroth
approximation (5.1) for uj:
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Appropriate terms must also be added to solutions
{5.3), (5.4) But boundary conditions (3.6}, (3.7) at
the side surfaces of the solenoid can now be satisfied
only for z = 0. In other words, the above solution
(6.1), (6.2) is valid only in the middle cross section
of the solenoid. However, the domain surrounding z =
= 0 is most significant, since it is here that the stres-
ses have their extremal values. Without determining
the coefficients «. B, vy, we merely note that the cor-
rections for the zeroth solution are of the order B%/1?
and reduce the absolute values of the stresses. Thus,
solutions (5.1)—(5.9) represent the upper limit for
solenoids of finite length.

§7. The above results also apply to superconductive solenoids, In
fact, the materials of which such solenoids are made are supercon-
ductors of the second kind. These are characterized by having two
critical fields He, and He, . Fields H < Hc, do not penetrate into the
superconductor; fields H > He, destroy superconductivity. The mag-
netic permeability p of the superconductor therefore depends on the
intensity of the magnetic field: p = 0 for H < Hc, ; as the field increases
beyond Hc,, the magnetic permeability increases sharply and quickly
approaches unity, remaining at p ~ 1 all the way to H = H, [5].

In a long solenoid the field Hy varies approximately linearly over
the radius (see (2.3)), vanishing at the outside radius. Hence, p is
different from unity in some domain close to the outer boundary of
the solenoid. Formulas (2.1) are not valid here, and the above analysis
is, surictly speaking, invalid. However, it is usually the case that
Hey < He, . The above domain is therefore narrow, its linear dimen-
sions along the radius being A ~ BH¢,/Hc, <« B. Moreover, the body
force Eq. (2.3) in this domain is also small, fi ~ 47Aj2/c?. Hence,
allowance for the fact that y vanishes and that there is a gradient
in the domain in question has no significant effect on the final results,
and the stress distribution in a long superconductive solenoid can be
determined from formulas (5,1)—(5.9).

§8. In investigating the above solutions we are interested primarily
in the extremal values of the stress tensor components and in their
localization. Comparison of the values of ojk in various solenoids is
best carried out for the same value of the magnetic field intensity Hy
at the solenoid axis, From formulas (2.1) and (2.5) we find that

Ho=4n—B(1—2)- (8.1)

The coefficient in front of the braces in expressions (5.4) for Ojk
can now be expressed as H 2 [96m(1 - 0) (1 = x)%] . The value of the
Poisson coefficient ¢ is determined by the material of which the sole-
noid is made. For most materials ¢ is close to 1/3. We shall therefore
make frequent use of the value o= 1/3. For these Hyand o, expres-
sions (5.4) depend on the parameter x (see (5.2)) and on the choice of
boundary conditions.

Analysis of expressions (5.4)=(5.8) shows that the condition of a
fixed outside surface of a solenoid (cases (5.8) and (5.9)) is more ad-

vantageous (advantageous conditions are those for which the maximum
stresses are minimal) than the condition of a free outside surface (cases
(5.6) and (5.7)). Hence, the component cpg has its largest positive
values (tensile stresses are positive, compressive stresses are negative)
for all t and x in case (5.6), while the component oyr has its largest
positive values for all t and x in case (5.7). These components (hence~
forthall values of oji will be given in units of H¢ /96m) assume their
maximum values at the inside surface of the solenoid for t = x,

Ope=2(1 —0)1 (1 — a1 x

x [(T—20).+ (2—40)x + (3—60)22], (8.2)
O =2 [(1 + 0) + (1 —0)2®]7F [T460 -+ 27 + 322]. (8.3)

The values of these maxima are minimal for x = { and are equal
to ogy = (14 - 40)/(1 - o) or 19 (for 0 = 1/3) and to oy = (14 + 120)/
/(1+ o) or 13.5 (for o = 1/3), With increasing x the values of Eqgs.
(8.2) and (8.3) increase, and in the limiting case A «< 1forx=1- A
we have 0pg = 12/4, o= 12+ 6o or 14 (o= 1/3).

Let us analyze the more advantageous cases (5.8) and (5.9) in
more detail. The component g in case(5.8)decreases monotonically
with increasing t, so that the extremal values occur at the inside and
outside surfaces of the solenoid. At the inner surface for t = x we
have

Opp=2(1 —0) (1 — 2271 [(1 —0) +
+ {4 02?1 [(t — o) (5—20) —
— (1 = a) (2 + 40)z — (8—20 — 1606222 +
+ (1 +0) (2—40)z® + (1 + 6) 3—60)at] + (8.4)

For x = 0 this value is maximal and equal to (10 - 40)/(} ~ o) or
13 (o= 1/3). Expression (8.4) decreases with increasing x, passing
through zero for some x = xy For o= 1/3 we have x;, ~0.59.

At the outside surface of the solenoid for t = 1 we have

Oy = —46 (1 ~0) (1 — 2% [(1 — o) -+ (1 + ok %

X1( —6) + (2—20)a + (6—50)x? - 202% — 324 - (8.5)

For x = 0 this value is equal 10 =40/(1 - o) or —2(0= 1/3), be-
coming still more negative with increasing x. In the limiting caseé
A« lforx=1- A we have Oy = ~6o/A.

In case (5.9) the component Gy, hasa positive maximum localized
near the inside surface of the solenoid. For x = 0 its valuye is (§ =
- 20)/(1 = o) or 6.5 {o=1/3). With increasing x the maximum di-
minishes and vanishes for some x = Xy For 0= 1/3 we have x, = 0.28,
At the inside surface of the solenoid for t= x we have

Opp = 40 (1 — 0)1(1 — 22)7 (2—22 — 327). (8.6)

For x = 0 this value is 80/(1 - o) or 4 (o= 1/3). With increasing
‘X expression (8.6) diminishes, passing through zero for x = xp=
= (1 = 1)Y2 /3 ~0.55.

At the outside surface of the solenoid for t = 1 we have

O = — 40 (1 — 0)1 (1 — 2™ (1 + 22) - (8.7)
For x = 0 this value is equal to =40/(1 - 0) or =2 (0= 1/3)., With
increasing x expression (8.7) diminishes, and in the limiting case
A« lforx=1-A wehave oy, = =60/(1 = o)A or =3/A (o= 1/3).
The component oy in case (5.8) vanishes for t = x and has two
extrema in the range x < t < 1, The first of these extrema is a pos-
itive maximum. For x = 0 it is localized near the inside surface and
is equal to (5 - 20)/(1 - o) or 6.5 (0 = 1/3); with increasing x the
maximum shifts toward large t and diminishes, vanishing for some
x = Xg For o= 1/3 we have xy ~ 0.26. The second extremum is a
negative minimum. It is localized near the inside surface of the
solenoid and its values are practically equal to the valuesof opr exactly
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on the swface for t = 1,
Opp = — [{1 — 0) -+ (1 + 0)a?]™ [2-+-4x - (18+120)22]- (8.8)

As x changes from 0 to 1 this value changes from =3 to =14 (o=
= 1/3).

In case (5.9) the component oy behaves like oge in case (5.8).
At the inside surface of the solenoid for t = x we have

O =2 (1 — o)t (1 — 2% [5—60 — 2z — 3a?], (8.9)

For x = 0 this value is maximal and equal to (10 - 120)/(1 - o)
or 9 (o= 1/3). With increasing x expression (8.9) diminishes, passing
through zero for x = xp= ({16 — 180)1'/2 - 1}/3 or x, ® 0.72 (0 = 1/3).

At the outside surface of the solenoid for t = 1 we have

Tpp = —2 (1 — 0)Y{1 — 2271 [{ - 2z — (3 — 60) 22) *  (8.10)

For x = 0 this value is equal to =2/(1 = o) or =3 (o = 1/3). In the
limiting case & « 1for x =1 - A we have oy = —60/(1 - 0)A or
-3/ (o= 1/3). ’

The component oy, does not depend on the choice of boundary
conditions (see (5.5)). It assumes its extremal values at the inside
surface of the solenoid for t = x,

Gz =2 (1 — o)1 — 2H)—1 -+ 66 — 2z — 322 - (8.11)
and at the outside surface fort= 1,
Oy = —2 (1 — o)t — 21 [1 + 22 — (3 — 60) 22]- (8.12)

Value (8.11) is maximal for x = 0 and equal to (-2+ 120)/(1+ o)
or 3 (o= 1/3). With increasing x it diminishes, passing through zerc
for x = x¢= (=2 180)1/2 - 1)/3 ot xy= 1/3 (o= 1/3). The value of
Eq. (8.12) for x = 0 is equal to ~2/(1 - o) or =3 (o= 1/3). With in-
creasing x it diminishes, and is equal to ~6/4 in the limiting case for
x=1-A(L«1),

Thus, for a solenoid with a fixed outside surface the maximum
tensile stresses are localized near the inside smiface, They decrease
with increasing x and vanish for some x = x¢ The maximum compres-
sive stresses are localized near the outside surface, and increase in
absolute value with increasing x. The cases of a free Eq. (5.8) and
fixed Eq. (5.9) inside surface are competitive, and the advantage of
one over the other is determined by the choice of optimal values of x.
This choice in turn depends on the difference in the effects of compres-
sive and tensile stresses.

We must also note that the components cyy and oy are positive,
i.e., tensile, nearthe inside surface over a certain range of values
of x from 0 to some x( The windings of a wire solenoid will separate
here (if they are not glued together). The solenoid can then no longer
be considered a continuous medium, and the above solutions are not
strictly applicable. The formulation of the problem must be altered.
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